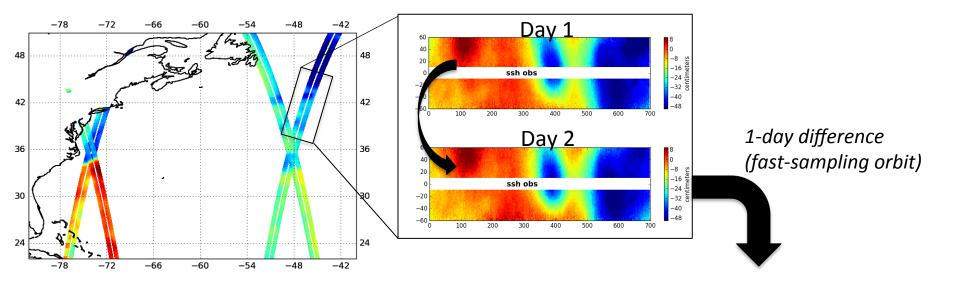


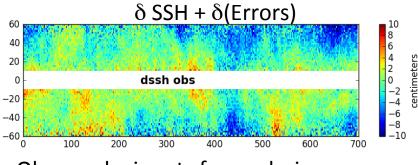
Introduction

- Synoptic validation of the SWOT error spectrum is a hot topic
- Classical along-track 1D spectral analysis will measure the PSD of the <u>sum</u> of ocean signals plus all errors (not individual components)
- Measuring individual components is essential for Cal/Val and many applications (e.g. assimilation)
 - → Can we extract each spectrum from SWOT images with the sum of SSH + all errors ?
- In this study we use the <u>2D properties of KaRIN images</u> and the cross-track geometry of measurement errors to measure each component <u>separately</u>

Experimental setup with the SWOT Ocean simulator: dataset

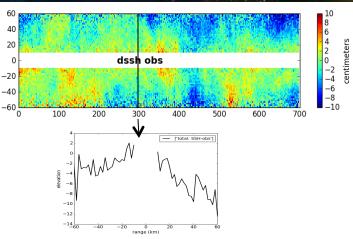


- 60-day worth of fast sampling phase simulation (MITgcm run)
- 1-day differences cancel out a large fraction of the SSH signal



« Observed » inputs for analysing errors

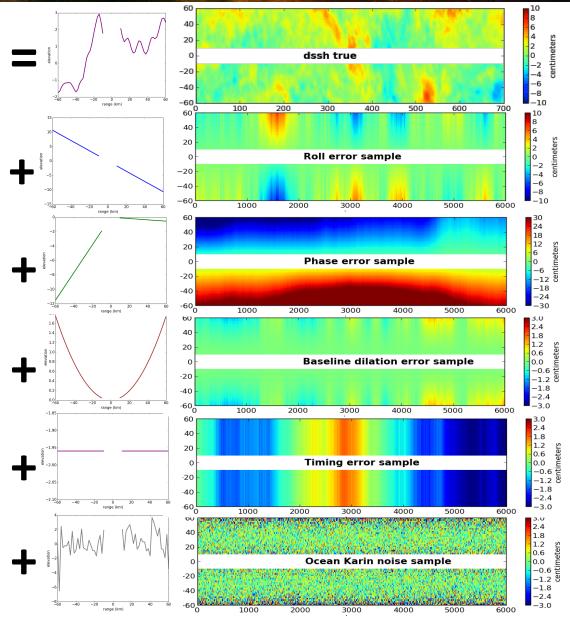
What is measured in a 1-day difference?



 Signal and errors are «visually» not separable in a single image

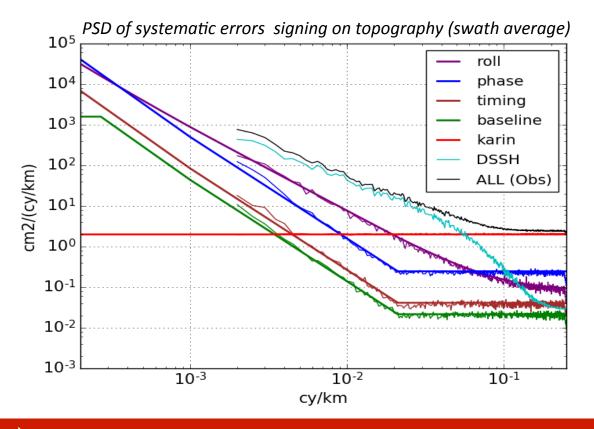
BUT

- Most error signals are range dependent (of known geometry)
- Ocean topography is not rangedependent
- Error cross-track signatures should be statistically separable from topography



What is measured in a 1-day difference? (cont.)

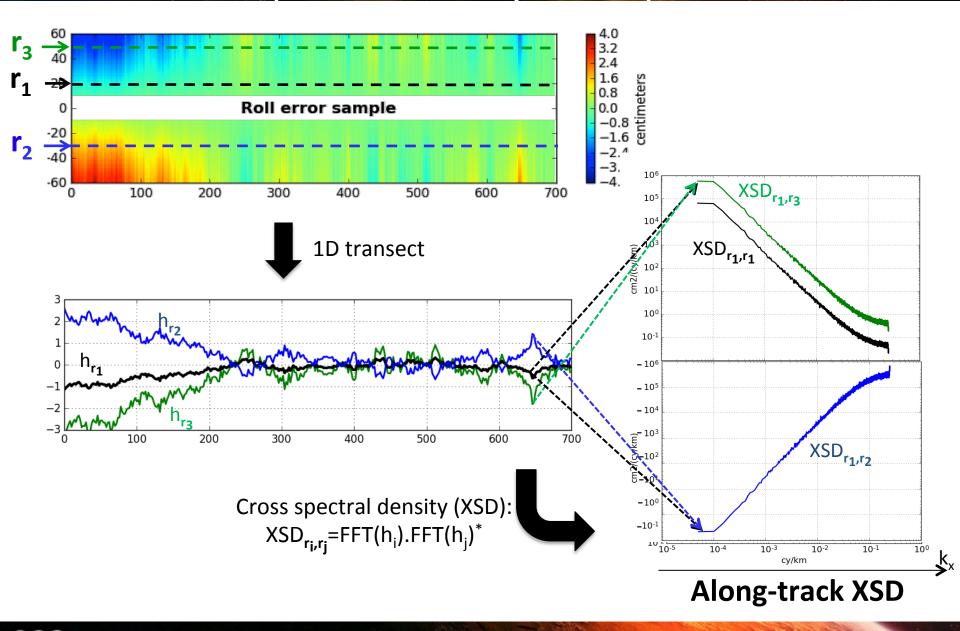
 One day difference measures the one-day variability plus twice the sum of all errors (we assume complete error decorrelation)



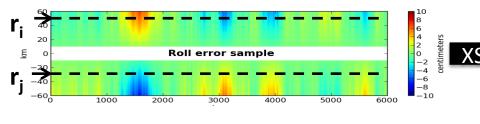
→ Can we extract each spectrum from SWOT images with the sum of SSH + all errors ?

THE CROSS SPECTRAL SIGNATURE OF SWOT SIGNALS

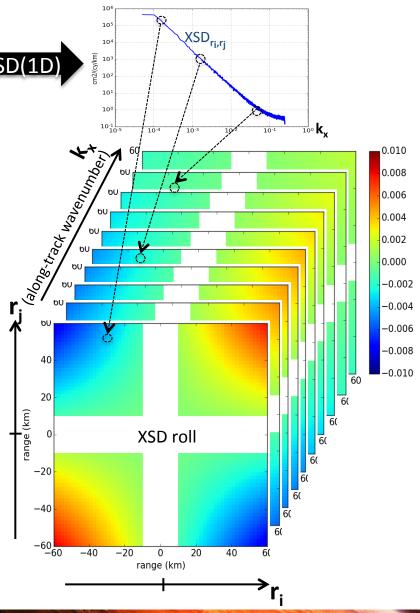
Cross spectral density: example of roll



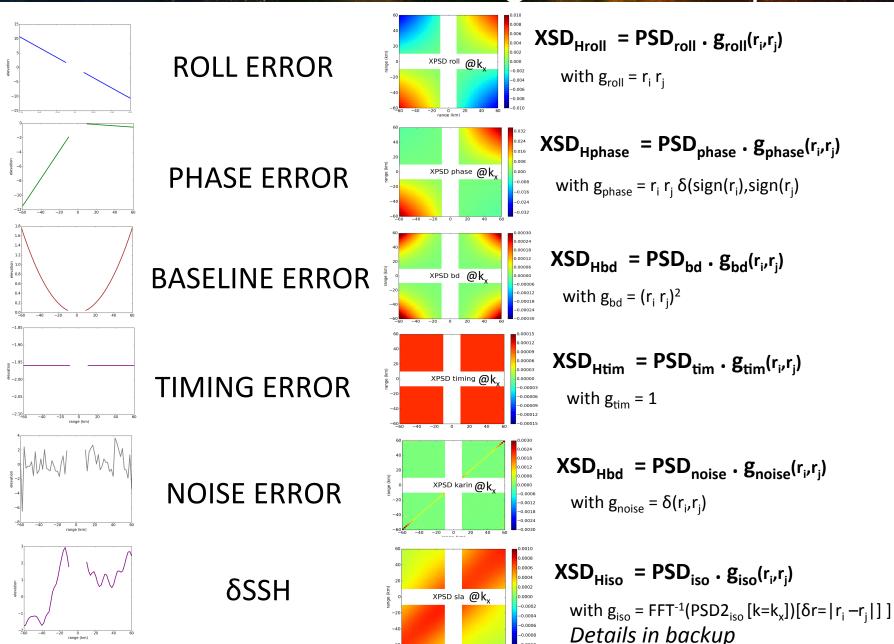
XSD cube: example of roll



- For all r_i, r_j , insert the 1D function XSD(k_x) in a 3D cube
- Yields a « XSD cube » which is a function of r_i, r_i and k_x
- Here, roll has a specific 2D signature in each (r_i, r_i) slice



2D slice of XSD cube: signatures are specific



METHODOLOGY

Step 1: build the XSD cube from the observations

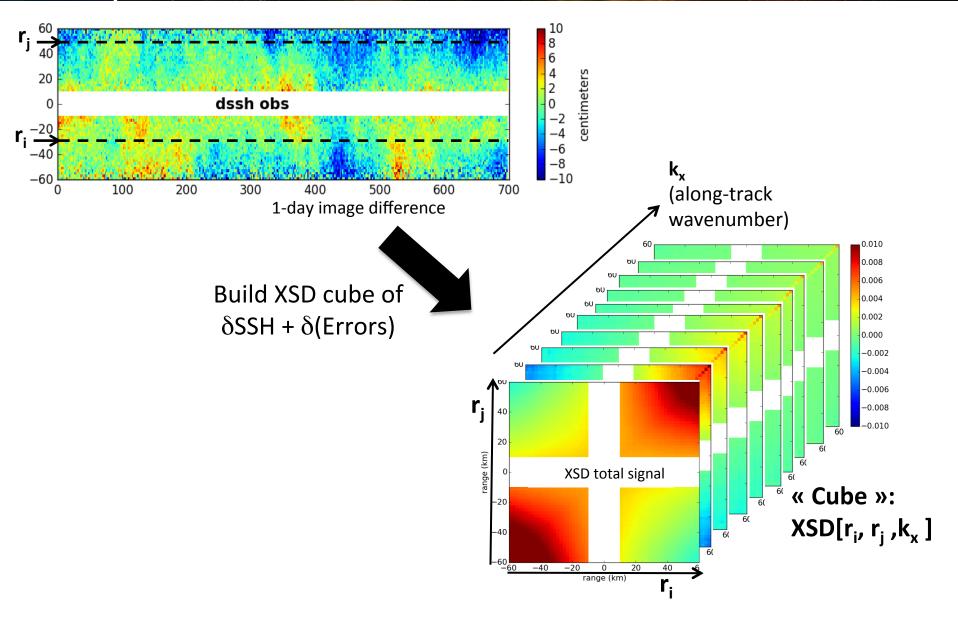
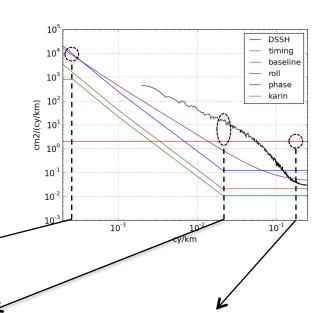


Illustration at different wavenumbers

 XSD slices have very different patterns according to wavenumbers

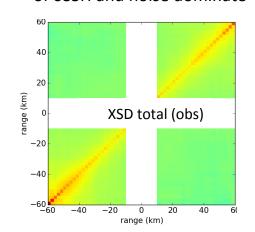
 We recognize some combinations of analytical models



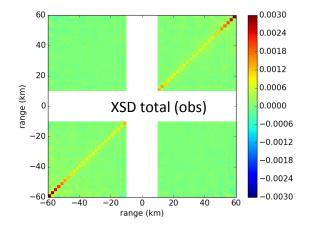
Long wavelengths: signature of roll and phase dominate

20 XSD total (obs) -20 -40 -20 0 20 40 60 range (km)

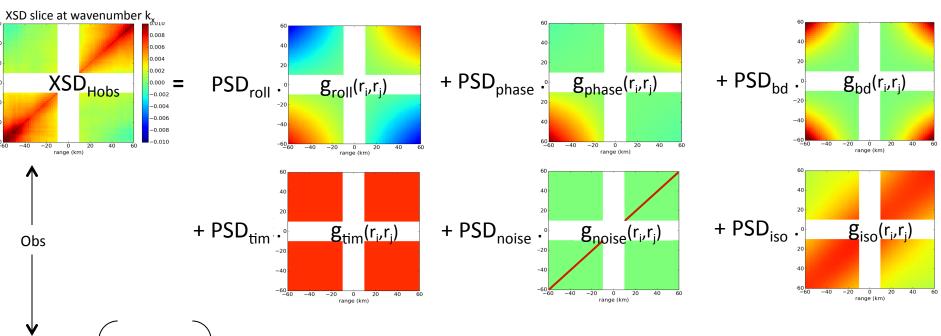
Medium wavelengths: signature of δ SSH and noise dominate



Short wavelengths: signature of Karin noise dominates



Step 2: Decompose the XSD slices



$$\mathbf{y} = \mathbf{G} \cdot \begin{bmatrix} PSD_{roll} \\ PSD_{phase} \\ PSD_{bd} \\ PSD_{timing} \\ PSD_{noise} \\ PSD_{iso} \end{bmatrix}$$

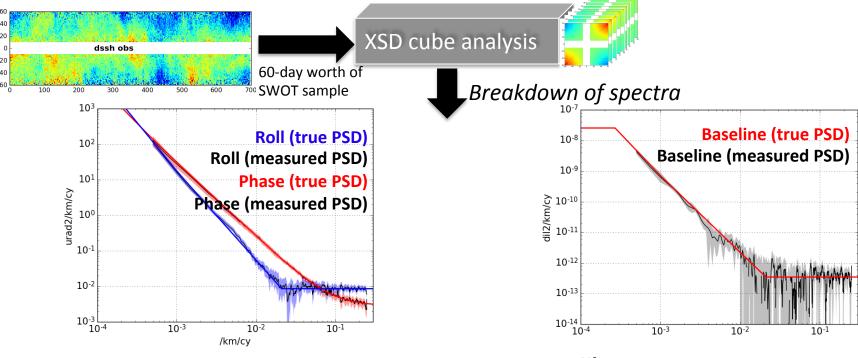
$$x_{est} = (G^TG)^{-1} G^T y$$

Each PSD is estimated at the given wavenumber k_x

Then, we repeat for all k_x

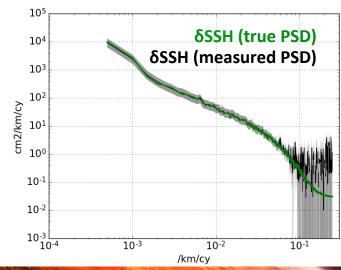
RESULTS

Effective reconstruction of individual spectra

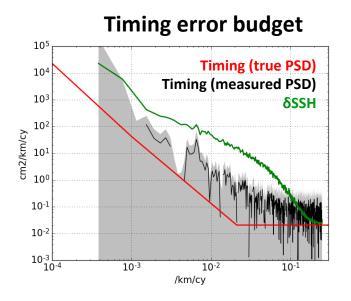


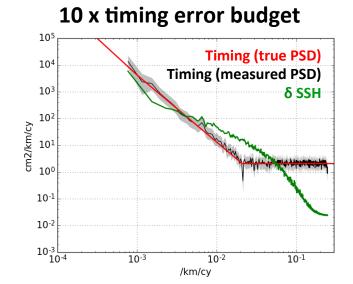
Results after 60 days on 1-day orbit:

- Estimation of mean PSDs works very well for dominent terms (roll and phase) at all wavelength.
- \bullet Even where their energy is >10 times less than δ SSH
- δ SSH well estimated, but difficult to separate it from Karin noise for λ <15 km



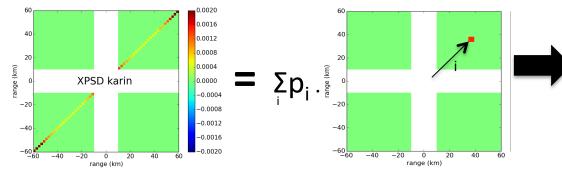
Effective reconstruction of individual spectra (cont.)



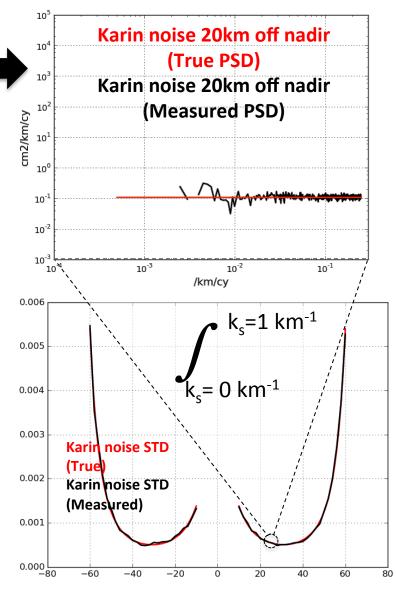


- The separation between timing and δ SSH relies on δ SSH isotropy assumption
- The timing range bias cannot be measured if it meets the requirement
 - In the error budget, this term is 100 times smaller than δ SSH
 - Its XSD signature is difficult to separate from δSSH
- If the timing is larger than the requirements and become a threat for SSH, then it would be measured

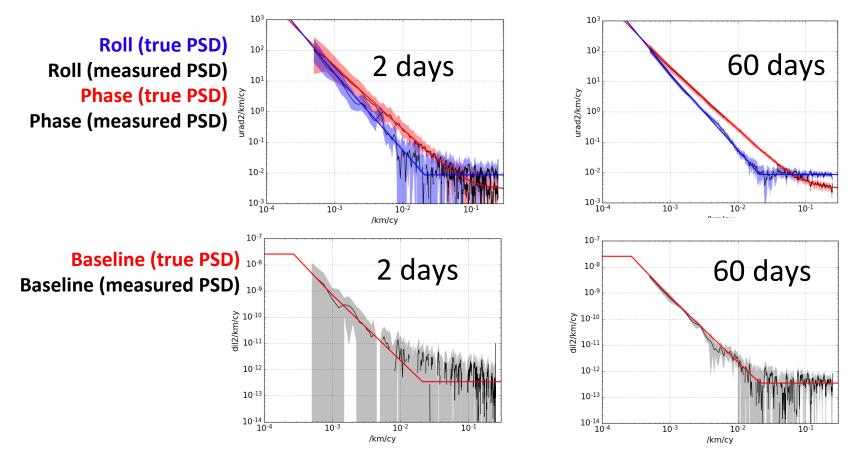
Measuring white noise levels and SWH modulation



- Noise matrix can be also decomposed in the across-track (range) direction
- Each component describes the white noise spectrum for a given cross-track distance
- Accurate estimation of the U-shaped noise specifications
- Noise is modulated by SWH and the science requirements are defined for SWH=2m → possible to do this analysis in SWH bins in order to measure the SWH modulation of noise



What if one PSD is time-varying?



- The method works on small datasets (here 5 days only)
 - The dominating PSDs are still accurate → it is possible to infer rapid changes of these terms during the fast sampling phase
 - Difficult to measure frequently PSDs with little energy (here baseline)

Conclusions and outlook

Analysing the SWOT XSD cube works very well in simulations

- Measured PSD of roll, phase and baseline errors is very accurate (unique XSD signatures)
- White noise and its modulation by SWH and range is accurately measured
- DSSH spectrum is well estimated for wavelengths $\lambda > 15$ km (limit is noise-related)
- Timing range bias is more difficult to measure
 - If requirements are met, it is negligible w.r.t ocean topography
 - If requirements are not met (unlikely), it can be measured up to λ = 200 km

Why do we want to measure individual spectra?

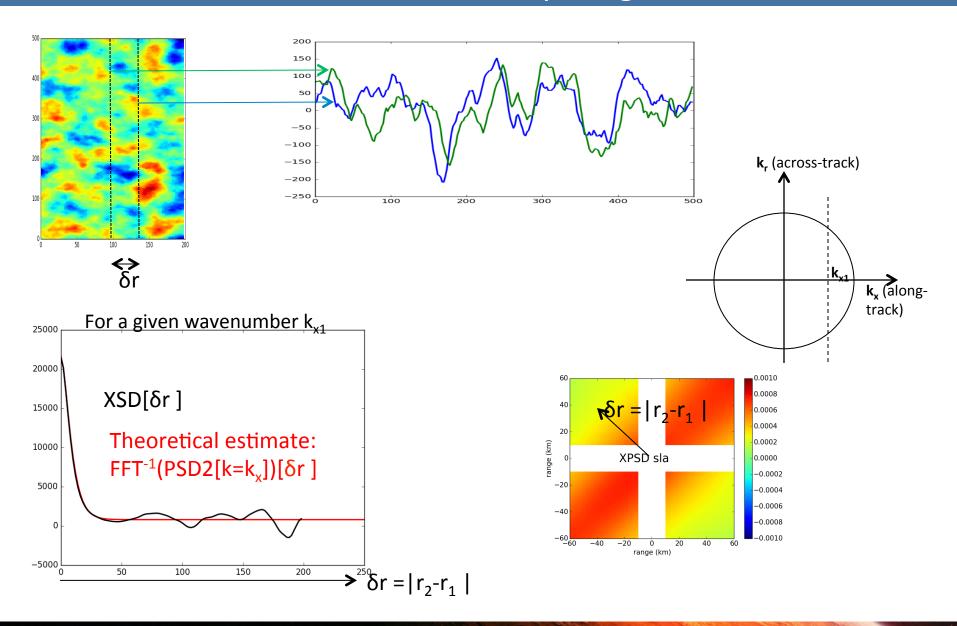
- Cal/Val during the fast sampling phase (to demonstrate that requirements are met)
- For all product usages that require spectral error description (e.g. assimilation or OI)
- XSD can be used on the 21-day orbit to detect changes in product accuracy

What if unexpected signatures are seen in flight data?

- <u>SWOT XSD cube contains a wealth of information</u>, certainly more than we can simulate today
- If unknown signatures are observed on the XSD cube, we can perform additional analyses to infer their origin (e.g. modulation by latitude, or H/V pol, or sea-state)

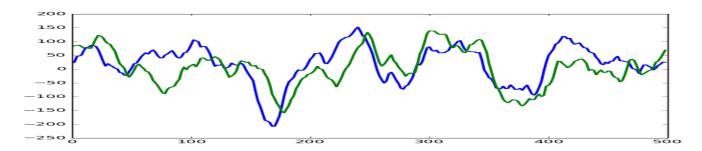
BACKUP SLIDES

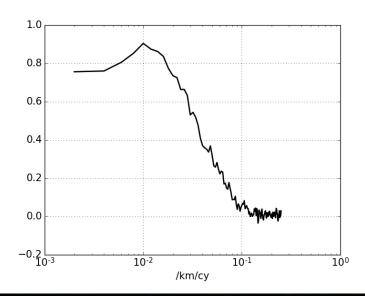
XSD cube of isotropic signals



The Cross Spectral Density (XSD) between two series

Physical space (all integrated wavenumber)	Fourier space
Variance	Power Spectral Density (PSD)
Covariance	Cross Spectral Density (XSD)





- XSD is similar to a « covariance » at a given wavenumber. Can be negative
- XSD between two identical series is the PSD

$$XSD_{h_1,h_2} =$$